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oxidative addition and reductive elimination pathways, mimicking transition-metal-like to yield the most accurate ground-state geometries, but other cheaper basis sets such as def2-SVPD and def2-SVP may be o s G oo | m06! def2-tzvp def2)] printbasis TIGHTOPT cCr 883 -87.8 877 ey gz 554 555 544 - _55:7 _55:7 _54:4
reactivity as shown in the Figure 1 (Crimmin et al., 2018). These developments highlight employed before performing final optimization with def2-TZVP to minimize the computational cost. Relativistic effects for itk DEFGRID3 verytightscf avg zzz ‘:’zj ?:Z j’:z or e e cor oy ane e
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Many current studies have focused on reducing nature Bgill experimental X-ray crystallographic data (Martins, 2024). Therefore, the M06-L/def2-TZVP/ECP level of theory was primarily CH3 - —
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common elements, bismuth is shown to be Bi o . : .. . : : 55 s
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igure 3: General Scheme of Bismuth are listed in Figure 6. £ ® 50E (kcaimo)  Treninefo BDE (kcalmol) Re = 0.752 The plot of Bi—S bond dissociation energies
access to multiple oxidation states—Bi(lll)/Bi(l), Redox Catalysis In cases where spurious imaginary modes are observed despite the use of tight integration grids, or when $ e - (BDE) versus the KBO values of the
Bi(111)/Bi(ll), and even Bi(V)/BI(Ill)—enabling (Cornella et al., 2022) frequency calculations fail to converge, auxiliary basis set parameters will be adjusted to mitigate linear dependency and 34343315 — ———— — T-backbonding interaction shows a clear
diverse radical and redox transformations (Cornella & Moon, 2022). According to numerical instability. Notably, single-point energies exhibited non-negligible deviations (| AE| = 1.93 kl/mol) depending on £ | e SO G- (e ETans
mechanistic studies, such transformations often proceed via single-electron transfer the.a.uxmary.bass sgt employed as |IIust.rated in Figure 7. To mamtcam cqn5|stency across all DFT calculations, the identical Figure 7: Difference in single point energies ;- *  correspond to a stronger Bi_S bond. This
Drocesses, where radical intermediates with lone electron mediate bond|formations and auxiliary basis set will be therefore applied for both geometry optimizations and subsequently frequency analyses. By for different auxiliary basis sets (Shin, 2025) ' dt 4 :
' H vticall e bi H : | 202 : H off default, AutoAux protocol of ORCA is primarily utilized to generate appropriate auxiliary basis sets; however, predefined e [ relationship is further clarified by the
regeneratle t Ie cTOt-a ytlc: .y actlved. ismut sp.eC|es (Yar;? et al., .O” 3). De(sj|{)|teI suc ecI orts, basis sets such def2/j sets was employed instead where explicitly defined Coulomb fitting bases improve SCF stability and Mathematlcal BaCkgrOu nd: ® 2400 2200 a ( .1.80)0 1600 specific QUAO data.
many molecular bismuth intermediates remains unstable especially at radical states due to reduce residual integration errors. (BOerGr &BrSy fealme
dimerization of bismuth free radical species, highlighting importance of designing optimal Following confirmation of true local minima, the homolytic bond dissociation energies (BDEs) of the Bi-SPh QuaSI-AtomIC Orbital = e L orare | erana | oo | _son L cucr | owen | oo |_soe L oce | owey | i
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reactions. The general strategy is adding electron-donating substituents to enhance radical homolytic cleavage is shown in Figure 5. The BDE values will be obtained according to: (0 b et o ot e bt st (1) b et (L2 = 3 Y e o) B awems  samecoos aos o s sz : c o sisn o 2o
. . . . . . . . . atomic orbitals forming the basis set. Then, QUAOS {64} are sonstructed via 1;2) = [Aa(1 )p ( Bb(2)]
delocalization and T1-conjugated frameworks to facilitate spin density distribution across the — o — Emnira: eieodon apaioe P st i s b P Aa,Bb
ieand. minimizin Iocalizjedgradical character at the bismut: center tyhus reventin BDE = Egi(i-ary))- + Espn. — Egi(ai-arynspn . A Bb 1 The bond order of these interactions increases alongside the KBO, clearly indicating that
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uides’irable e rgeactions P ’phen ’Iprings o tfg1e ligand where BDE is determined by the total electronic energy of the optimized closed-shell singlet Bi(lll) complex, and the total Kpopo = 0.1p, 1 (Aal — Evleb)A # B -backbonding strengthens and contributes to the stabilization of the Bi—S bond.
hecture affects the fa\;orabilit ¢ K’omol e of molecular bicmath c:;mplexes sl energlc?s of the resulting Bl-(.:entered and phenylthiyl radicals. The homolytic BDE is one of the key dependent variables, o B oo cltafned from thasons pasticle Furthermore, occupation analysis shows that the Bi~S bond holds more electron density
. L Y : Y L . ' alongS|de.the Ql_JAO da.ta dISCU.SSEd below. : . . L . : = (6aIDI3) @ Figure 9: Density Bond Orders than the TT orbital, consistent with electron donation from the 1T system to the Bi—S bond.
determining the likelihood of formation of free radicals intermediates. Quasi-Atomic Bonding Orbitals (QUAO) are localized orbitals obtained by projecting delocalized molecular orbitals e i e e et bt o s B st A o and Kinetic Bond Orders from
(MOs) onto sets of atomic-centered orbitals, providing a bridge between fully delocalized MOs and atomic orbital 1 e f QUAG overtaps sal inetic eneriy contributions QUAO (Rudenberg et al., 2020) In other words, the strengthening of TT-backbonding from the SPh ring appears to be
interpretations of bor?ding. QUAO provio.les insight intq electron dgnsity distripution anq .bond .charac.ter, bridgin.g the gap Kan = (65 P16 0 significant. However, since the SPh ring lacks obvious functional groups, this trend likely
betwegn ful!y dglocallzed molecular orbitals ant.j atomic-centered mte.rp.retsjntlons; specifically, |t.prOV|des qua.ntlttatlve e 7 e s s e st o arises from geometric and steric effects rather than purely electronic factors. To identify the
analysis of kinetic bond order, electron occupation numbers, and hybridization character, reflecting the contributions of i, rovidin uatiaie i bhto hybridization, bond covalency: and <pecific ceometric constraints influencing BDE variation. comolex structural analvses. such as
individual atomic orbitals to bonding and antibonding interactions (Ruedenberg et al., 2020). QUAO analysis enables the | . 2 N 2 - > . y '
assessment of bond strengths, radical character, and electronic delocalization in complex molecular systems, making it heat maps, could be useful. Additionally, QUAO analysis of geometrically constrained

Figure 8: Mathematical
foundation behind quasi-atomic
orbital (QUAO)

particularly useful for studying reactive Bi-centered radicals. The resulting QUAO data provides quantitative insight into structures—such as bridged systems or rings with substituents only at the para

the distribution of electron density, hybridization character at metal center, and degree of orbital delocalization across
the ligand framework, all of which are dependent variables to analyze as shown in Figure 9.

position—can help isolate and evaluate the electronic effects of those substituents.
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