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Introduction/Background Methods

To determine the optimal reaction pathways, we used:

Furfuryl alcohol 1s an important molecule for synthesizing furan
resins. These resins are generally used for coatings and adhesives
due to their excellent heat stability and chemical resistance.
Furfuryl alcohol 1s derived from Furfural through hydrogenation

Projected Energies During Reaction

VASP computer modeling simulations. 5310

We first used computer stmulations to model the starting and ending molecules for each possible reaction. VASP adjusts each

-531.5

(adding hydrogen atoms to double bond). To produce furfuryl structure to find the lowest energy state. Because these simulations are done at near-zero temperature, we used the change in
alcohol, we have to hydrogenate the carbonyl group (see figure). energy (AH) to estimate whether a reaction 1s thermodynamically favorable—only keeping reactions where the final state has
However, if hydrogenation breaks the carbon-carbon bond, lower energy than the starting one (AH < 0).

Energy (eV)

undesirable compounds like furan and tetrahydrofuran (THF) are

i Next, we used another method (NEB simulation) to model how atoms move and bonds break or form during the reaction. This
produced.

gave us an energy profile showing the activation energy, or how hard it 1s for the reaction to happen. Reactions with lower

~ ~ activation energy are more likely to occur, so we picked the most favorable pathway based on these results. Furfural Molecule in VASP
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Here, the energy barrier 1s relatively low, and the process
Platinum Surface Reaction Results of breaking the carbon-carbon bond is aided by the surface

®

hydrogen. This allows for a reaction with all steps
Furfuryl Alcohol This was a an unreasonable reaction pathway to produce happening simultaneously. However, on Pt—Sn surface
an undesirable product. In this reaction, we observe the alloys, the presence of Sn introduces a significant

carbon-carbon bond breaks first without interaction activation energy barrier (~2 €V). Sn changes the behavior

Q
Carbon-Carbon “ O

- %%@ ¢ from the hydrogen atom. This causes a higher activation of nearby platinum (Pt) atoms by donating electrons,
promatic Ring / @ = energy barrier (~2 eV) and therefore a lower probability which makes it harder for hydrogen atoms to stick to the
(FU,,y:driI:engg) of resulting in Furan and CH,OH surface. As a result, hydrogen 1s less likely to gather and
Furan THF move around near the active sites, helping prevent

Undesirable Pathway unwanted hydrogenation reactions.

This a similar but more plausible reaction pathway
This reaction is typically carried out on a platinum surface due to its

strong affinity for hydrogen atoms, which facilitates hydrogenation.
However, the specific intermediates formed and the detailed
transformation of furfural during the process remain not fully
understood.

that produces an undesirable byproduct on Pt(111)

surface. In this reaction, we start with Furfuryl alcohol
and observe as a hydrogen atom on the surface disrupts Acknowledgments
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