Electric Vehicle
Reflections from 24-25 Season by Min: EMAIL ms2602@jiolani.org OR rre2601@jiolani.org

Vehicle Design

e Structure of the vehicle:

Figure 1: OnShape assembly of the electric vehicle

mailto:ms2602@iolani.org
mailto:rre2601@iolani.org

Figure 2: Fully Constructed Electric Vehicle II before 2025 Nationals
o carbon fibers rods X4 connected with connector at the middle (so technically two carbon
fiber rods support the vehicle)
m **carbon fibers are necessary to reduce the weight of the vehicle significantly**
o front chassis has encoder connected with belt gears (axle spins => belt gear => encoder
spins) **refer to the simple diagram below**

gniorler

aaill il
axle

o Balloons added to one of the front wheels (obviously, it prevents the vehicle from veering
off at the end)
o Lasers attached at the front and used for the alignment of the vehicle
e Hardware of the robot:
o arduino UNO board
o breadboard to build circuit
o IMPORTANT: how to set distance the vehicle travels (refer the figure below)
m LCD display displays the distance the vehicle will travel, and you can adjust the
distance using the rotary encoder
m Press the rotary encoder to set the distance
m Press the button on the breadboard to activate the vehicle

(4 I

Brushless Motor and ESC Experimentation

e Motor Selection:
o Experimented with motors at different kV ratings to optimize the balance between RPM
(speed) and torque
o Lower kV motors provide higher torque but lower top speed; higher kV motors provide
higher RPM but lower torque
e Key Challenge: Startup Torque vs. Current Draw
o Certain motors would stall or fail to initiate movement if the static friction and initial load
required too much torque
o High-torque motors (lower kV) could overcome static friction but drew excessive current
during startup

o If current draw exceeded the ESC's rating, it would either cut power to protect itself or
cause the motor to overheat and potentially burn out
e ESC (Electronic Speed Controller) Considerations:
o ESCs have specific continuous current and burst current ratings (measured in amps)
o Had to match ESC current capacity to the motor's startup current requirements
o Underpowered ESCs would shut down during acceleration; overpowered ESCs added
unnecessary weight
e Systematic Testing Process:
o Tested multiple motor kV ratings (e.g., 1000 kV, 1250 kV, 1500 kV) with different ESC
current ratings (e.g., 40A, 80A, and more)
o Measured actual current draw during startup using multimeter or ESC telemetry
o Monitored motor temperature after test runs to identify thermal stress
e We ultimately found optimal motor-ESC pairing that balanced
o Flash Hobby Brushless Motor (1250 kV rating) with 40A ESC

Circuit Diagram

onwder Lw

<LiquidCrystal I2C.h>
<Encoder.h>

<Arduino.h>

N = 50;
tablelY1l [N+1], tablelY2[N+1];
table2Y1 [N+1], table2Y2[N+1];

precomputeTables () {

sl = 0, el = 2*bl + cl, dl = (el
i =0; 1 <= N; ++1i) {
x = sl + 1 * dl;
yl = 0, y2 = 0;

x < bl) {
pow(x, 3)) / 6.0;
pow(x, 2)) / 2.0;
> bl && x < bl + cl) {
pow(x — bl,2) * bl) / 2.0
pow (bl,2) / 2.0) * (x - bl)
pow (bl,3)) / 6.0;
bl * x) - (al * pow(bl,2)) / 2.0;
> bl + cl && x < 2*bl + cl) {
pow (b1l,3)) / 6.0
bl * pow(cl,2)) / 2.0
pow (bl,2) * cl) / 2.0
bl * pow(x - bl - c1,2)) / 2.0
pow(x - bl - ¢1,3)) / 6.0
* pow(bl,2) / 2.0) * (x - bl - cl)
ol * @l) * (x =l = @l)g
(al * bl) - (al * (x — bl - cl) / 2.0))
al * pow(bl,2)) / 2.0

*

(x - bl

+ (al * bl * cl);
}
tablelY1l[i] yl;
tablelY2 [1i] v2;

= 2*b2 + c2, d2 = (e2 - s2)
<= N; ++1i) {
i * @l2g

if (x > 0 && x < b2) {
(a2*b2+a2*b2*b2*c2) * x - (a2 * pow(x,3)) / 6.0;
(a2 / 2.0) * (b2 * (b2 + 2 * c2) - pow(x,2));
if (x > b2 && x < b2 + c2) {
(5.0/6.0) * a2 * pow(b2,3)
az * pow(b2,2) * c2
a2 * b2 * (c2 + b2/2.0) * (x - b2)
(a2 * b2 / 2.0) * pow(x - b2,2);
(a2 * b2 / 2.0) * (3 * b2 + 2 * c2 - 2 * x);
if (x > b2 + c2 && x < 2*b2 + c2) {
* b2 * (5*pow(b2,2) + 9 * b2 * c2 + 3*pow(c2,2))) / 6.0
* pow(b2,2) / 2.0) * (x — b2 - c2)
2.0) * pow(x - b2 - c2,2)
6.0) * pow(x - b2 - c2,3);
2.0) * (pow(b2,2)
* (b2 + c2 - x)
F el = x,2)) 8
}
table2Y1[1i] vl;
table2Y2[1i] v2;

findNearest (input,
idx = 0;
minDiff = 1el8;
for (i = 0; 1 <= N; ++1i) {

@ = abs(arr[i] - input);
if (B < minDiff) {
minDiff = ﬂ;

return idx;

ENC1 PIN A 4
ENC1 PIN B 5
ENC1 BUTTON PIN 6

BUTTON PIN 7/

ESC_PIN 9

LiquidCrystal I2C lcd(0x27, 16, 2);

Encoder setEnc(ENC1 PIN A, ENC1 PIN B);

Servo esc;

oldPosition = 0;

distanceValue = 700;
selectionStarted = false;

distanceConfirmed = false;

counter LEFT = 0;
leftEncoderChanged = false;
TARGET COUNT = 10000;
motorRunning = false;
ail () {
if (digitalRead(3) == LOW) {
counter LEFT--;
} else {
counter LEFT++;

leftEncoderChanged

ail() {
if (digitalRead(2)
counter LEFT++;

} else {
counter LEFT--;

}
leftEncoderChanged

State { SETiDISTANCE, WAITisTART, RUNNING, STOPPED };
State state = SET DISTANCE;

targetDistance = 100;
lastSetPos = 0;

buttonPressed = false;

setup () {

precomputeTables () ;

lcd.init () ;

lcd.begin(1l6,2);

lcd.backlight () ;

lcd.clear () ;

lcd.setCursor (0, 0);

lcd.print ("KILL ME");

Serial.begin (9600) ;
Serial.println("hello cruel world");
pinMode (2, INPUT PULLUP) ;
pinMode (3, INPUT PULLUP) ;

pinMode (BUTTON PIN, INPUT PULLUP) ;

attachInterrupt (digitalPinToInterrupt (2), ail, RISING) ;
attachInterrupt (digitalPinToInterrupt (3), ail, RISING)

pinMode (ENC1 BUTTON PIN, INPUT) ;

esc.attach (9);
esc.writeMicroseconds (1000) ;
Serial.println("Calibrating ESC...
esc.writeMicroseconds (2000) ;

delay (2000) ;
esc.writeMicroseconds (1000) ;

delay (2000) ;

Serial.println ("ESC Ready!");

loop () {

switch (state) {

case SET DISTANCE:
handleSetDistance () ;
break;

case WAIT START:
handleWaitStart () ;
break;

case RUNNING:
handleRunning () ;
break;

case STOPPED:

lcd.setCursor (0,0) ;
lcd.print ("-- Stopped —-- g

break;

handleSetDistance () {
readRotary () ;

if (encoderButtonPressed()) {
lcd.clear () ;
lcd.setCursor (0, 0);
lcd.print ("Distance set to:");
lcd.setCursor (0, 1);
lcd.print (distanceValue) ;
delay (2000) ;

lcd.clear () ;
lcd.setCursor (0, 0);
lcd.print ("Press btn to");
lcd.setCursor (0, 1);
lcd.print ("start motor");
state= WAIT START;

handleWaitStart () {
if (digitalRead (BUTTON PIN) == LOW) ({
counter LEFT = 0;

leftEncoderChanged = false;

esc.writeMicroseconds (1100) ;
state = RUNNING;
lcd.clear () ;

handleRunning () {

stopdist = table2Y1[0];"
i =1; 1 < N; i++) if (table2Y1l[i] > stopdist) stopdist =
table2Y1[i];
lcd.setCursor (0, 1);
lcd.print (distanceValue, 1) ;

if (leftEncoderChanged) {

leftEncoderChanged = false;
factor = 0.97857143;

distCm =
.21518987342*1.02142857143*1.94174757282*1.07285714286*abs (counter
.5191311697/8.23529411765/0.86206896551*factor*factor*1.00714286;

lcd.setCursor (0, 0);

lcd.print ("Trav: ");

lcd.print (distCm, 1);

lcd.print (" cm) g

1if (distCm >= distanceValue) {

esc.writeMicroseconds (1000) ;

state = STOPPED;

}

else 1if (distCm >= distanceValue-stopdist*100-100) {
if (distCm >= distanceValue-stopdist-50) {

esc.writeMicroseconds (1020) ;

brakeCm = distCm- (distanceValue-stopdist*100-100) ;
il = findNearest (brakeCm/100, tablelYl):;

esc.writeMicroseconds (() (1050 + (constrain(table2Y2[il], 0.0,
2.0) * 150))):
} else {
il = findNearest (distCm/100, tablelYl):;
esc.writeMicroseconds (() (1050 + (constrain(tablelY2[il], 0.0,

*150))) 3

readRotary ()

newPosition = setEnc.read():;

if (newPosition != oldPosition && (newPosition

oldPosition = newPosition;

candidate = 700 + (newPosition

if (candidate < 700) {
candidate = 700;
setEnc.write (0) ;
oldPosition = O;
}
else 1f (candidate > 1000) {
candidate = 1000;
maxSteps = (1000 - 700) * 4;
setEnc.write (maxSteps) ;

oldPosition maxSteps;

distanceValue = candidate;

showDistanceOnLCD () ;

encoderButtonPressed () {
lastState = HIGH;
currentState = digitalRead(ENC1 BUTTON PIN) ;

if (lastState == HIGH && currentState == LOW)
delay (50) ;
if (digitalRead (ENC1l BUTTON PIN) == LOW) {
lastState = LOW;

return true;

}
else if (currentState == HIGH) {

lastState = HIGH;
}

return false;

showDistanceOnLCD () {
lcd.setCursor (0, 1);
led.print (" ")
lcd.setCursor (0, 1);

lcd.print (distanceValue) ;

Notes for future reference!
Encoder Calibration and Distance Accuracy
e (Core Problem: Encoder Counts vs. Actual Distance
e Encoder counts are theoretically accurate, but actual distance traveled deviates from
calculated distance
e Main cause: Motor doesn't brake precisely at the target point because momentum causes
overshoot or undershoot
e Solutions were either to activate the manual motor break system, which may wear down
the motor over time or apply a calibration factor to adjust target encoder counts

Calibration Factor Calculation
e Factor formula: Target Distance + Actual Distance Traveled
e Example:
Set distance: 750 cm

o Actual distance: 760 cm (overshot by 10 cm)
o Calibration factor: 750 + 760 = 0.987
o Implementation: Multiply this factor by target encoder counts in Arduino code to correct

for overshoot
Battery Management for Accurate Calibration
Critical: Use fresh batteries, but NOT brand new ones
Recommended calibration window: Run 3-4 test runs after switching batteries, then calibrate
between runs 4-10
e Rationale:
o Fully new batteries provide excessive motor power, causing inconsistent behavior
o After ~10 runs, batteries begin draining significantly, reducing motor performance
o Runs 4-10 represent the "stable operating range" where battery voltage is consistent
o Minimizes confounding variables from battery charge fluctuations
End-of-Season Reflection
e Achievement: Successfully solved straight-line navigation! The vehicle travels straight reliably!
e Limitation: Target encoder counts in code don't precisely reflect actual distance traveled, though

calibration factors compensate adequately
e Room for improvement: could have refined encoder-to-distance mapping for more intuitive code
(e.g., 1000 counts = exactly 100 cm)

Challenge for Next Season: Obstacle Navigation

e New requirement: Vehicle must curve around obstacles and reach target point
e Reference: Similar to Scrambler C event from 2024 season
e Curving mechanics not yet explored...

2025-26 Tentative Season Plans (** please write all the plans below**)
By Min Shin (written during 2025 summer)

Path Calculator:
https://www.desmos.com/calculator/gnwcfceapf

Figure 1: path sketched by Desmos and set-up diagram of vehicle with variables labeled
very theoretical; calibrations have to be done regardless

Circuit: identical to 2024-25 season circuit (works very well)

Use multiple arduino boards (one of the options for now)

https://www.desmos.com/calculator/gnwcfcgapf

Design:
EMAIL ME to get access to CAD files
Wheels:

e Use thicker and larger wheels for the rear axle and thinner and smaller wheels for front axle

o Thickness changes the susceptibility of wheels to steering (thinner wheels are better for
steering, while larger wheels are better for controlling/preventing the drift)

e Please figure out which dimension of wheels we are going to use (search for some in the cabinet
or on the shelf? buy some if necessary)

o Probably T61 and T81 banebot wheels (T61 should have slightly smaller diameter and
thickness) (minimize the difference in diameter though; probably at most 1 inch?) (we
already have T81 wheels from 2025 nationals)

o 3-7%”x 0.8” for rear wheels? 2-7” x 0.6” for front wheels? (find appropriate shaft size)
(check size of the metal rods as well)

Anti-Sway Bar:

e For stability when turning
e It reduces roll (side-to-side tilting) when the vehicle turns
e When the vehicle leans (like in a turn), the suspension compresses more on one side — the sway
bar resists this difference
e [t increases lateral stability, keeps more tire contact with the ground, and improves steering
response
Encoder:

e Use the identical encoder but attach it to rear axle rather than front axle (errors are more likely for
the front axle)

Front Axle:
e Use anckermann geometry (please refer to the CAD files)
Calibrations due to External Factors (e.g., weight, friction)

e Try to concentrate weight on the rear axle (basically put all the components clustered together
near the rear axle)
e Refer to the table below to adjust oversteering and understeering

Adjustments To Increase Understeer To Increase Oversteer
Front Tire Section Smaller Larger
Rear Tire Section Larger Smaller

Weight Distribution

More Forward

More Rearward

https://banebots.com/t61p-121by/
https://banebots.com/banebots-wheel-2-x-0-8-hub-mount-30a-green/

CAD Design:

The design uses Ackermann steering; although the assembly is slightly mismatched, sliding the caliper
sideways allows the steering angle to vary. Carbon fiber bars are attached vertically and horizontally to
reinforce the vehicle’s structural integrity. Additionally, the 3D-printed parts incorporate “lighten”
features to reduce weight without compromising strength.

	
	Code

